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Firm foundations

Where do we start?

Analysis is an extension of school calculus. By building on firm
foundations we intend to develop a rigorous study of the behaviour of
functions. To start you off, then, try the following exercise:

f(x)=x* xeR
Calculate f'(1) and JZ f(x)dx

I hope that you found that easy: f'(1) (or df/dx at x = 1) is 2 and the
integral is 2%.

But what on earth do those answers mean? Aren’t they something to do
with gradients and area? Where did those techniques you used come from
and why do they work? Try another exercise:

g0) =Ix| xeR
2

Calculate ¢'(—3) and J

g(x) dx

You may be a little puzzled by that example as the ‘modulus’ function,
although simple enough, is not usually included in school calculus. Never
mind, consider this next example. Another function with a lot of practical
uses is ‘the integer part’ function, where [x] denotes the integer part of x,
for example [3.27] = 3. Try this third exercise:
Mxy=[x] xeR
3

Calculate Hh(2) and J h(x) dx

0o

I suspect that most of you will be giving up by now or (hopefully) begin-
ning to think a little more about what these things mean.
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Our only hope of building a solid study of analysis is by starting from
firm foundations, so there’s no point in plunging straight into the calculus.
Let us go back to the idea of a function:

f(x)=x* xeR
gx)=1|x] xeR
hx)=[x] xeR

A function takes in a number and gives out another. For example

1.6 — f F—> 256

So surely to understand how functions behave we must first understand
the behaviour of the numbers themselves? Our very first mathematical-
looking statement above was

f(x)=x* xeR

But what is R? Our study of analysis surely has to start with a study of
numbers.

A fresh beginning

We’ve now decided on a fresh start: from this point onwards we must make
clear what our assumptions are and base all our deductions upon those
assumptions. But how far back should I go? I could assume that you have
absolutely no knowledge of numbers and begin by naming two new
creations, ‘0’ and ‘I’, the first ‘numbers’. I could then introduce an
operation, ‘+’, which takes in any pair of existing numbers and gives out a
number as an answer. Since our only numbers so far are 0 and 1 we try
those:

0,1

1,0

So far that is very boring indeed. But the pair of numbers fed in don’t have
to be different so we try:
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0,0 + >0

1,1 + 7

and the last example will give us a new number which we might call ‘2°.
Then 2 + 1 would give us a number which we might call ‘3’, and so on.
This would be a laborious way of introducing the number system. It would
be rather like giving a history course which started with the formation of
the first algae in the oceans: by the time you got to any interesting
historical events the audience would have died from boredom. So such a
basic beginning would be inappropriate here. Like the historian who, for
the sake of an interesting and complete course, chooses a convenient
starting-point such as the outbreak of the first world war, we are going to
take a giant leap forward:

We shall assume that all the arithmetic which you met at primary
schooel works in exactly the way you’d expect it to.

We therefore assume that there are whole numbers (or integers)
v —5, -4, -3, -2, -1,0,1,2,3,4,5,...

(the set of all those is referred to as Z) upon which the normal operations
of addition, subtraction and multiplication can be applied, giving answers
back in the same set. These integers have a natural order and given any
two different integers, m and n say, one of them will be less than the other.
If m <n for example then starting at m and ‘counting’ m, m + 1,
m + 2, ... we will eventually get to n.

We also assume that any integer can be divided by any non-zero in-
teger to give a fractional (or rational) number. For example,

2L (=5+2=10+4etc), 35, —223,...
and the set of all such rational numbers is denoted by Q. These rational
numbers again behave exactly as you'd expect them to from school. Any
rational number m/n can be ‘cancelled down’ to its lowest form (for
example 84/126 would cancel down to 2/3).

Furthermore the four arithmetic operations extend in a natural way to

Q and behave exactly as you'd expect them to. For example,

3B +7=103=7+3;
— the order does not matter. In general

a+b=b+a
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for each of our numbers a and b (and we say that + is commutative).
Similarly

R+5D+4=124=2+53+4)

S S——
done done
first first

so that in general the sum a + b + ¢ makes sense without brackets, this
property being called associativity. The same two rules hold for multiplica-
tion too. Also the two operations of multiplication and addition combine
in natural ways such as with the rule

alb+c)=ab+ ac

called distributivity. All these rules taken together mean that brackets can
be multiplied out and manipulated in the usual ways.

By making our assumptions we have taken a large leap forward and we
have a viable working number system. But is it complete enough for us to
be able to consider properly things like functions and differentiation etc,
which is what analysis is all about? No, because even assuming all the
arithmetic that we learnt at primary school there is still a huge gap in our
number system.

Primary arithmetic is not enough to lead us to a full study of decimals,
especially as some decimal expansions are infinite (they go on for ever) and
it’s not clear from primary arithmetic what that means. However, I'd now
like to use decimals in an informal way to motivate where we go next. As
long as we only use the decimals to motivate us then we are still keeping to
our brief of basing our formal development on the primary arithmetic
alone.

Informally then let us represent the rational numbers by their decimal
expansions. For example,

1 =1.0000... (a ‘“finite’ decimal, or one with Os recurring)
14 = 1.5000... (again with Os recurring)
Tass = 2.43575757 ... (with 57s recurring)
3% = 3.142857142857 ... (with 142857s recurring)

All these decimals (and indeed the decimal expansions of all the numbers
in Q) recur, that is they eventually have a repeating pattern. Of course this
recurring pattern may simply be of zeros, which one doesn’t bother
writing. But surely it’s easy to make up decimals which do not have a
recurring pattern? One of the most famous examples is

7 = 3.141592653589793 ...
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Yet our primary school construction of the arithmetic has completely
missed such numbers. As a first step to incorporating them we now let R
denote the set of all real numbers (which will turn out to be the set of all
numbers with a decimal expansion). Whereas those numbers with
recurring decimals were the rational numbers, all the rest will be called
irrational.

We won’t be sure about the existence and behaviour of the irrational
numbers until we have decided which assumption to make in addition to
our assumption about primary school arithmetic. But just in case you
should think that the irrationals are very few-and-far-between and that
they are not worth worrying too much about, try answering the following
informal question:

Question Do you think that there are more rationals than
irrationals, more irrationals than rationals, or about the same
number of each?

Counting such huge collections is perhaps a little dodgy, so you might
prefer the question in an alternative form:

Question I choose a real number between 0 and 1 at random.
(For example I could have a die with ten faces and the digits 0-9
on those faces. I could then choose the decimal expansion
randomly by repeatedly throwing the die.) Would the resulting
number be more likely to be rational (with a constantly repeating
pattern) or irrational (with no repeating pattern)?

Surely the latter is far more likely, so much so that one would hardly ever
choose a rational number. So, far from being a minor gap in the real
numbers, the irrational numbers will form the major part of R.

We now pause for some exercises. In general these will form a crucial
part of our development and you are urged to give them careful thought
before referring to the solutions on page 221.

Exercises

1 By representing two typical rational numbers by m/n and p/q,
where m, n, p and q are integers, show that the sum, difference, product and
quotient of two rational numbers are all rational numbers. (Of course we
shall always assume that we will only divide one number by another when
the latter one is non-zero.)

Deduce that the sum and difference of a rational number r with an
irrational number s gives irrational answers and that the product and
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quotient of a non-zero rational number r with an irrational number s gives
irrational answers.

2 In one of the above examples 3% = 3.142857142857 ..., with a
repeating string of six digits. Show why in the decimal expansion of m/n
(where m and n are integers and n > 0) there is eventually bound to be a
recurring 0 or a recurring string of less than n digits.

3 I’s a surprising fact that given any positive integer n some
multiple of it is of the form 99...9900...00. For example given the
number 74 it turns out that 135 x 74 = 9990. (Perhaps this is connected
with the fact that

# = 0.0135135135135..)

Prove the general result.

(Solutions on page 221).

A not-so-simple equation

Even with your basic primary school arithmetic you were soon able to
move into the world of algebra and solve simple equations like

34x=5
Tx =11

because in each case a straightforward arithmetic operation yields the
solution. But what about the equation

x2=2

How do we know that there exists an x satisfying this equation? The idea
of taking square roots of 2 makes no sense if we are only allowed to assume
primary school arithmetic. You could of course use your calculator and
tell me that the answer is 1.414 214, but that’s only an approximation since

(1.414214)* = 2.000001237796

In fact, since a calculator can only display a finite number of decimal
places, all its answers are rational numbers. With more and more powerful
calculators you might be able to obtain better and better approximations
to a solution of x? = 2: e.g.

1414214, 1.4142136, 1.41421357, ...

all of which give squares larger than (but closer and closer to) 2. But by
this method you’ll never find a number whose square equals 2. In fact, if
you restrict attention to rational numbers (which is all you’re allowed
from your primary school maths) then there is no x which satisfies x? = 2,
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as we now see in our first ‘theorem’; i.e. a result worth highlighting for
future reference:

Theorem There is no rational number x with x2 = 2.

(Having stated that result we now need to prove it using only the
assumptions stated earlier. Proofs of future theorems can in addition use
results already established.)

Proof Let x = m/n where m and n are integers with n > 0. We
shall take for granted the fact that the fraction m/n is written in a sensible
form, with no factor in both m and n which could be cancelled down (for
example we wouldn’t write 38/24 when 19/12 would do).

We'll now assume that x? = 2 and we’ll deduce a piece of nonsense,
showing that our assumption is wrong:

(o) -
om?=2n?
. m? is even

But the squares of odd numbers are themselves odd. So how can the

square of an integer be even? The integer itself must be even. But then its
square is divisible by 4 i.e.

m is even
2 = 2n? is divisible by 4
2 is even

. nis even

But this means that both m and n are even, contradicting the fact that the
fraction m/n was written in a sensible form.

Hence if we assume that the rational number x has x? = 2, then we get a
contradiction, so there’s no such rational. O

Actually there’s a very swish alternative way of seeing that there is no
rational number which gives a sensible value of /2’ (or of /¢’ unless g is a
perfect square) which uses properties of prime factors. For example
imagine that you thought that the rational number x = 1.41242424 ...
gave x2 = 2. You could then write x as a cancelled-down fraction and then
express the top and bottom of that fraction as a product of primes; i.e.

4661 59 x 79

= 14124
X= 141242 = e = T T S xS X3 x 11
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But then
2 =1412424 .. 72
59 x 79 x 59 x 79
T2x2x5x5x3x11x2x2x5%x5x3x 11
and that’s clearly impossible since still nothing cancels on the right-hand
side. This method relies on prime factorisation and a proof based on this
idea will be found in the next exercises.

So we now know that there is no rational number x with x2 = 2, but
how can we be sure that there is such an irrational number? Our primary
arithmetic is no help to us when it comes to irrational numbers. In order to
complete our study of R we need one further fundamental assumption, but
it’s not easy to see what form that assumption should take. We'll
investigate that further in the next section.

Exercises
1 Show that ,/3 and 3/2 are not rational.
2 Are you happy to accept that an eventual conclusion from

primary school arithmetic is that every integer larger than I can be
uniquely expressed as a product of prime numbers? (For example

1320=2x3x2x5x11 x2

where obviously the order of the factors is irrelevant.) If so, use this fact to
show that if m and n are positive integers then it is impossible to have m?
= 2 x n? (Assume that m is the product of M primes, and n the product of
N primes, and see what conclusion you come to.) This gives an alternative
proof that \/ 2 cannot be rational. If you’re keen, show that if ¢ is a positive
integer then the only way that \/q can be rational is when g is a perfect
square, in which case ./q is itself an integer.
3 (i) Suppose you are given a positive number a with «*> > 2. Then
let
o 1
F=3*%
Show that 0 < f < « and that 2 > 2. Explain why this shows that there is
no smallest positive number whose square is more than 2.
(ii) Suppose now that you are given a positive number a with «? < 2. By
considering 2/« and using (i), show that there is a number f with § > « and
B? < 2. Deduce that there is no biggest number whose square is less than 2.

(Solutions on page 223)
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Piggy-in-the-middle

You will probably have met a little set theory at school: a ser is simply a
collection of objects, and for our purposes these objects will always be real
numbers. In other words, all the sets which we consider are subsets of R.
Examples are

N = {1,2,3,4,...} — the set of natural numbers

A={xeRx <1}

B=1{1,15,2}

C={xe@0<x<3}
The last example can be read as ‘those x in Q —i.e. those rational x — which
satisfy 0 < x < 3°. Examples of members or elements of C are 1.5 and 2.32:
we write 1.5 C. It is sometimes convenient to visualise a subset of R
informally by thinking of R as an infinite ruler and by marking that subset

as part of the ruler. The following pictures illustrate R and the four sets N,
A, B and C defined above:

R, the real line sve =3 =2 -1 0 1 2 3 s

N s+e =3 -2 -1 0 1 2 3.
A c+ -3 -2 -1 0 1 2 3 e--
B vt -3 -2 -1 0 1 2 3 e-
c see =3 -2 -1 0 1 2 3 e

Some special sets which we shall encounter are called intervals: these are
sets with the property that if two numbers are in the set then so are all the
numbers between them. So the only intervals in the above examples are R
itself and the set A. The set B, for example, is not an interval because it
contains 1 and 14 but not the number 12 which is between them. Similarly
C fails to be an interval because 0 and 3 are in C but, as we shall soon see,

-there exists an irrational number between them which is therefore not in C.

In general we write

[a, b] for the ‘closed’ interval {xe R:a < x < b}

(a, b) for the ‘open’ interval  {xeR:a < x < b}
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(a, b] for the interval {xeRa<x<b}
(— 0, a) for the interval {xeR:x < a}
[a, o) for the interval {xeR:x = a} etc.

Earlier we started to consider some positive real numbers whose
squares are More than 2. Now let M be the set of all such numbers; i.e.

M= {xeR x>0and x* > 2}
Then, as we saw earlier, examples of members of M are

1414214, 1.4142136, 1.41421357, ...

We could, in a similar way, let L be the set of all real numbers whose
squares are Less than 2; i.e.

L={xeRx*<2}
Examples of members of L are 1.414213, 1.4142135 etc.:

The picture of L and M shows their relative position: by sticking to
positive numbers in M, L seems to be ‘less than’ M in some sense. And
where do we expect \/2 to be in relation to the two sets L and M? We
would surely expect it to be ‘between’ them. There is no way that the
existence of a number ‘between’ L and M can be deduced from primary
arithmetic alone and so in order to proceed we need a further assumption:

If L and M are non-empty sets with / < m for each /€ L and each
m c M, then there exists a real number o such that o« > / for each
le L and o < m for each me M.

L T M
«, the ‘piggy-in-the-middle’
This extra assumption is known as the completeness axiom: it ensures that
there are ‘no gaps’ in R. All analysis texts have to make an equivalent
assumption somewhere and later we shall derive an equivalent form of

this axiom found in many books. To see what the completeness axiom
means in practice consider the following examples:

(D L={xeRx<2} M={xeRx>2} a=2

In general if the non-empty sets L and M satisfy [ < m for each [ e L and
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m € M then they can have at most one number in common. If they do have
a number in common then that number is the o of the axiom.

Q) L={xeRx<1} M={4,455556,...}

In cases like this there are many choices for o; here any « in the interval
[1, 4] will do.

(B) L={xeRx*<2} M={xeRx>0andx*>2}

It is examples like these (which we met above) for which the completeness
axiom is indispensible. In this case it ensures the existence of \/ 2, as we
now see:

Theorem /2 exists.

Proof As above let L and M be the sets
L={xeRx*<2} M={xeRx>0andx?>2}

Then L and M are clearly non-empty (for example 1 € L and 3 € M) and
I < mforeach e L and m € M. Hence by the completeness axiom there is
a number o with o > [ for each le L and « < m for each me M (and in
particular o must be positive).

In exercise 3 on page 8 we saw that there is no smallest positive
number whose square is more than 2;i.e. M has no smallest member: hence
a is not in M. Thus a2 < 2.

Similarly in that exercise we saw that there is no biggest number whose
square is less than 2;i.e. L has no biggest member: hence « is not in L. Thus
a’ =2

Hence «® equals 2 and we have found the number « equal to /2. [

In a similar way we can prove the existence of x*, the nth root of x, for
any non-negative number x and any positive integer n. Hence x™"
(=(x'""™) makes sense for the rational number m/n and, for the moment,
we shall only refer to x” when r is rational.

A common form of the completeness axiom concerns ‘bounds’ of sets. It
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will surely be immediately clear what we mean by a set being ‘bounded
above”: in the four examples we met earlier

N=1{1,234,..}

A={xeRx <1}

B={1,132}

C={xe@0<x<3}
the sets A, B and C are bounded above but N does not seem to be. (We
shall verify that fact in the next exercises. Don’t ever be tempted to think
that oo is a number — what on earth would its decimal expansion be?) In
general a set E is bounded above if there exists a number u (which will be
called an upper bound) such that e < u for all e in E. The set 4 given here is
bounded above, and examples of its upper bounds are 4, 270 and 14 (there
are lots of them! — we didn’t say that u was unique) although perhaps the
most natural choice of upper bound would be the number 1, being the
smallest of all the possible upper bounds of 4. The smallest upper bound
of a set E is sometimes called the supremum of E, and is denoted by supE
(it’s called the supremum because if there is one it is unique). In the four
examples above the sets 4, B and C were non-empty and bounded above.
Their suprema (= plural of supremum) are given by

supAd =1 supB = 2 supC =3

Can we now be sure, with the aid of our new assumption, that non-

empty sets which are bounded above always have a smallest upper bound

(or supremum)? We now prove that result, often used in text books in
place of our completeness axiom:

Theorem If L is a non-empty set which is bounded above then
L has a supremum.

Proof Let L be a non-empty set which is bounded above and let
M be the set of upper bounds of L. Then as L has at least one upper bound
it follows that the set M is non-empty. In addition it is clear that ! < m for
each le L and each me M.

We can now apply the completeness axiom to L and M to deduce that
there exists a number o with a > [ for each l € L (so that « is an upper bound
of L) and o < m for each m € M (so that « is the smallest of all the upper
bounds).

Hence « is the least upper bound (or supremum) of L. O

Of course there is nothing special about the top end of a set: we can
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define what we mean by a set being ‘bounded below’ and look for its
largest lower bound and we can talk about a set being bounded, which
means that it is both bounded above and bounded below.

Exercises

1 Given any positive number u let [u] denote its ‘integer part’. Show
that [u] + 11is a positive integer which is larger than u. Deduce that the set
N of positive integers has no upper bound.
2 (i) Which of these sets are bounded above? What are their
suprema?

A = {the prime numbers}

= {1/p: p is a prime number}

C = 12345678 9 }
2> 3>4> 556> 7> 8 9 103 - -

= {1’ 3 3_’ 7» 5’ %9 %’ 185’ . }

(i1) Show that if A and B are any non-empty sets with a + b < « for

each ae A and b € B then 4 and B are bounded above and
supAd + supB < «

3 (i) Show that a non-empty set M which is bounded below has a
biggest lower bound (called the infimum and denoted by infM).

(ii) Which of the sets in exercise 2(i) are bounded below? What are their
infima?

(iii) Now let L and M be any non-empty sets with I < m foreach le L
and m € M and such that there is a unique number a ‘between’ L and M (i.e.
with | < @ < m for each le L and me M). Show that

o = supl = infM
(iv) Let 4 be a non-empty set which is bounded below and let B be the
set { —a: a e A}. Show that B is bounded above and that
supB = —infA
4 (i) Let E be a set and consider the following two statements
about E:

(1) there exists a number b with —b < e < b for all e€ E;
(2) E is bounded (ie. bounded above and bounded below).

Show that if (1) is true then so is (2), and that if (2) is true then so is (1).
(Mathematicians say that (1) happens if and only if (2) does.)

(ii) Prove that the union of two bounded sets is bounded. (Remember
that the union E U E’ of the sets E and E’ consists of all the elements
which were in E or in E’ or both.)
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5 Let x and y be different real numbers and let 0 < f§ < 1. Show that
the number x + S(y — x) is between x and y. By choosing appropriate
values of # show that between any two different rational numbers there are
both rational numbers and irrational numbers, and that between a
rational and an irrational number there is an irrational number.

(We shall deduce in the next exercises that between any two different
numbers there are both rationals and irrationals.)

6 One of the following school exercises is wrong: which one, and

why?

(i) The attendance at a football match is 23 000 to the nearest thousand.
What is the largest number of people that could have been at the
match?

(ii) An angle is measured to the nearest degree and found to be 48°. What
is the largest possible value of the angle?

(Solutions on page 224)

Some natural consequences

Sometimes a set may have a biggest or a smallest member, known as its

maximum or minimum: note carefully that the maximum or minimum of a

set has to be a member of the set. For example the set
{xeR0<x<3}

has a maximum of 3 but no minimum member (if you give me any number

in the set then I can find a smaller one by halving your number), whereas

the set

{2,4,6,8,10,...}

has a minimum but no maximum. In exercise 6 above the set
{ne N: n to the nearest thousand is 23 000}

has a maximum member 23 499 but the set
{x € R: x to the nearest whole number is 48}

had no maximum. It seems that bounded sets of integers are more likely to
have maximum and minimum members than arbitrary sets of numbers, as
we now establish.

Theorem Any non-empty set of integers which is bounded above
has a maximum member. Similarly, any non-empty set of integers
which is bounded below has a minimum member. In particular
any non-empty subset of the set N of positive integers has a
minimum member.
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Proof Let E be any non-empty set of integers which is bounded
above. Then E contains some integer e and also the set E has some upper
bound u. Let ¢ be any integer larger than u. Then working through the
decreasing list of integers ¢/, ¢’ — 1,¢' — 2,...,e + 1, e, we come to a first
one which is in E. This is clearly the maximum member of E. Similarly if E’
is any non-empty set of integers which is bounded below then there exists
an integer e in E’ and another integer ¢’ which is a lower bound of E’. Then
working through the list of integers ', ¢’ + 1,¢ + 2,...,¢ — 1, ¢, it is clear
that the first one which is in E’ is the minimum member of E’.

In particular any non-empty subset of N is bounded below (by 1 for
example) and it follows that such a set will have a minimum member.[]

The last part of that result is the cornerstone of ‘the principle of
mathematical induction’, but before deducing that principle as a ‘corol-
lary’ (or consequence) of the theorem we illustrate it by means of an
example.

Example Let the numbers x, x,, x3, ... be defined by
x; =2and x, = /(6 + x,-) for n > 1.
Show that each of the numbers satisfies 2 < x,, < 3.

Solution Consider the required property 2<x,<3 as a
property of n. So n = 1 has the property since 2 < x; < 3.
Hence

2<x,<3
But then
2<J6+2) < J6+x1)< J(6+3)=3
=
ie.
2<x;<3

and so n = 2 has the property. But then
2< J(6+2)<J(6+x2) < /(6+3)=3
[ S—

= X3

2<x3<3

and so n = 3 has the property. But then
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2< x-1 <3
and so n = k — 1 has the property. But then
2<J(6+2) < J(6+x-1) < J(6+3)=3
———

=%
1e.
2 <X < 3

and so the result holds for all positive integers. O

Once we have established the general ‘principle of induction’ the
examples will be rather easier.

Corollary (The principle of mathematical induction) Let P be a
property which may or may not hold for any positive integer n,
and assume that:

(I) the number 1 has the property P;
(II) if any positive integer k — 1 has the property then so does
the integer k.

Then it follows that the property P holds for all positive
integers.

Proof Let F be the set of positive integers for which the property
fails (we hope to show that F is the empty set).
By (I) the property holds for the number 1 and so that number is not in
F. We can now deduce from the given conditions (I) and (II) the following
fact about F:

Ifkisin Fthenk — lisalsoin F

(For if k is in F then k > 1 and by (II) we cannot have the property P
holding for k — 1 but not for k.) Hence the set F has no minimum member.
By the theorem the only subset of N which does not have a minimum
member is the empty set. It follows that F is the empty set and that the
property P holds for all positive integers. (]

Example Show that for each positive integer n and for each real
number x # 1

I —x"
T+x+x24+-4+x""1=

1—-x
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Solution Although there is an alternative method we shall use
induction to establish the sum of this ‘geometric progression’ (or ‘geo-
metric series’).

(I) In the case n =1 the result is trivial, both sides of the required
equation being 1.
(I1) If the result is known for some positive integer k — 1 then

1 —xkt
T+ x+x? 4 xb72=————
1—x

and so
T4+ x4+ x>+ + x5!
=(l+x+x2++xk72) +x!
P—xkt =X xR o -
T T1-ox X 1—x T1-x

which is the required result in the case when n = k. Hence if the positive
integer k — 1 works then so does k.

By the principle of induction established above the result therefore holds
for every positive integer n. O

Example Show that any finite set (i.e. one which contains a finite
number of members) is bounded.

Solution We aim to show that the set

{X1,X2,..., Xn}
is bounded. You might think that this is obvious because you can put the n
numbers in order and then the lowest forms a lower bound of the set and
the highest forms an upper bound of the set. But in case you feel that such
an argument involving ‘w’ items is a little dodgy we’ll prove this result
by induction.

(I) In the case n =1 the set is {x;} which is clearly bounded below
(by x,) and bounded above (by x; too!).

(II) So now assume that the result is known for the positive integer k — 1;
ie. any set of k — 1 numbers is bounded. Consider the case when
n=k:

{X1, X2, o0 X} = {X1, X2, .0, Xie— 1} U {4}

bounded (by our assumption bounded
concerning the k — 1 case) (by (I))

which is bounded since (as we saw in exercise 4 above) the union of
two bounded sets is bounded.
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That completes the proof by induction and shows that a finite set

{x1, X2,..., X,} is bounded. |
Exercises
1 Which of the following sets has a maximum member and which

has a minimum member?

& = the empty set

A={xeQ:1<x</2}

B = {1/p: p is a prime)

C={Ll+31+3+451+3+5+51+5+5+5+4,..)

D={1,1-3,1-3-3,1-F5—3—-F1-3-4—7 -5}
2 Show that if a set has a maximum member then it has a
supremum which is contained in the set. Conversely show that if the set
has a supremum which is contained in it then the set has a maximum
member. (So that a set has a maximum member if and only if it has a
supremum contained in the set.)

State and prove a result connecting the infimum and the minimum of a

set.

3 Let x and y be real numbers with y > x + 1. By considering the
largest member of the set

{neZ:n<y}
show that there exists an integer between x and y.
4 We shall now try to establish that between any two different
numbers there is a rational number. To try to see first an informal
verification of this fact imagine for a moment that the two numbers are
more than 1/101 apart. Then surely at least one of the fractions

=2 =1 0 1 2 _3
«+«+101> 101> 101 VYs 101> 101 101"
illustrated below would lie between the two numbers?

L
> To1

101

Formally suppose that x and y are two real numbers with x < y. Let N
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be an integer chosen with N > 1/(y — x). (How do we know that such an
integer exists?) Use the previous exercise to show that there exists an
integer M with Nx < M < Ny and deduce that there is a rational number
between x and y.

Deduce that between any two different numbers there is a rational and
an irrational number.

5 Prove by induction that for each positive integer n
1 1 1 1 1
: =1=
v R IVE Tl SV Ry nt 1

(i) 12 +22+32+--+nf=inn+ )2n+ 1)
6 Prove by induction that for each positive integer n

O 0+x)=21+nx
where x is any number with x > —1. (Think carefully about where in
your solution you need the fact that x > —1.)

This result is known as Bernoulli’s inequality and is credited to Jacob
Bernoulli, one of a great Swiss mathematical family of the seventeenth and
eighteenth centuries.

(i) (1 + % = (g) n ('1’>x , <;>x2 fot ('r’)x - <:)x

where x is any number and (:) denotes the ‘binomial coefficient’ and
equals n!/(r!(n — r)!). (You will need the fact that
=)+ (7)-C)
+ =
r—1 r r
which you can easily verify for yourselves.)
This result is known as the binomial theorem.

7 Prove by induction that for each positive integer n
1 1 1 1 1
1)1 — — _ _ e — > 1
@ +2+3+4+5+ + o 2(n+)
. Pt 1 1 1 11— @ m
4+ =+ -++ < 1
(11) +2r+3r+4r+5r+ +(2n_1)r 1_(%)r—1 (r;é )

(Solutions on page 227)

Some loose ends

Our final topics in this chapter concern two numbers about which you
may be a little vague (if you're anything like I was when I started studying
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analysis) and yet which keep popping up in our studies: they are the
numbers ¢ and #. I used to wonder why ‘logs to the base ¢’ are called the
natural logs when 10 seemed a much more natural base than e (x2.71828).
And why did we switch from the nice neat 180° in a straight line to the
peculiar n (~3.14159) ‘radians™ These are questions which we shall
answer in due course for it takes a fair bit of analysis before we can see these
two numbers at work. But having struggled to set up the real numbers and
to pin-point /2 it is fitting to end the chapter by establishing the existence
of these two numbers.

Theorem Let E be the set of numbers

11+11+1+11+1+1 11+1+1+1+1
’ Itk 1 o2r o2t 3 o2 31 4r

Then E is bounded above. Its least upper bound is called ¢ and
it is irrational.

Proof Note that
N=3x2>2% 41=4x%x3x2>2% S!'=5x4x3x2>2%etc

(and if you were very fussy you could establish the general result by using
induction). Hence, by using the sum of a geometric progression (es-

tablished in an earlier example) in the case x = 3, we see that for n > 2
1+1+1+1+ +1<1+1+1+1+ S
2t 31 n! 2 4 bARE
1 - @) 1

Therefore every member of E is less than 3 and the set E is bounded above.
It follows that E has a least upper bound, which we shall denote by e.

Before proceeding to prove that e is irrational note that for any integer
N>2

{ 1 1 1
NiD TN+t T T TN TR

q 1 1
=W+WO+W+E+W+MN+$+”
N ! )
NTD)IN+3). . (N+h
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I 1 I 1
<w+n«LﬂN+m+w+mz+"+w+a“J

: 1+1+1+ S
(N+1)' 4 pARE
2 2 1 1
< = ~—<___
(N+ 1)l N+1 N! 2N!

(the upper bound of 2 for the geometric progression following easily from
the sum of a geometric progression in the earlier example in the case
x =3

We shall now show that e is irrational by assuming that it is rational
and deducing a contradiction.

Assume then that e is the rational m/n where m and n are positive
integers. Then by multiplying the top and bottom of this fraction by
appropriate factors we can deduce that

M .
e= NT for some integers M and N with N > 2

For example if e = 3 then e = 18/3! and if ¢ = 14/5 then e = 336/5! Now
1 1 1 | 1 P
+ — + ? + ; + -+ *]\W m say
is a member of the set E. Also from the inequalities established above we
can deduce that any larger member of the set E satisfies

1 1 1 1

M htatat T e
o { i
=1+ G4ty
P
m
1 1 1 P+l

TNED TN T T T NE R S A

-

——

1
<
2N!

Let us digest those facts: P/N!is a member of the set E and although there
are bigger members than this none exceeds (P + 1)/N!. Let us illustrate

the numbers of the form 1/N!, 2N, 3/N1, ... together with members of
the set E and the number e:
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pP-2pP-1 P
NI N! N
i d I ] i d

the members of F

Thus e = M/N, the least upper bound of the set E satisfies
P M P+1

NI NS AT
which is impossible since M is an integer. This contradiction shows that e
is irrational as claimed. |

As mentioned earlier the number e will occur many times in our studies.
The numbers in the set E defined above increase towards the supremum e,
getting closer and closer to it. In exercise 1 below you are asked to use this
fact to calculate an approximate value of e. The existence of n is derived in
a similar way in the exercises.

Surely after all this work building the real numbers on firm foundations,
we shall be ready to study functions in the next chapter?

Exercises

1 Use your calculator (or computer) to work out the approximate
value of the first few members of the set E in the above theorem. Hence
obtain an approximation for e.

2 Let P be the set of numbers

{6, J(6(1 + ), J(6(1 + %+ %), J(6(1 + %+ 3 + %)),
JO+i+5+16+ ).}

Use the fact that 1/m? < 1/m(m — 1) together with exercise 5(i) on page 19
to show that the number \/ 12 is an upper bound of P. The members of P
are increasing towards its supremum: use your calculator or computer to
work out some of the members of P and hence obtain an estimate of supP.
(In fact the supremum is 7, which arises in other much more natural ways
as we shall see in later chapters. And we shall prove in the very last exercise
of the book that = is irrational.)

3 In the two previous exercises we have used our calculators to
obtain approximations to the supremum of a set, but only after we had
proved mathematically that the supremum existed (by showing that each



